在天文学/天体物理学中,研究可能在只有少数人的小组内进行,也可能在涉及一千多人的大型联盟内进行,或者介于两者之间。大型联盟通常以特定的观测设施为中心。 大型联盟处理的整体研究主题通常很广泛,可能包括在较小的子单位(科学工作组)内进行的多个特定研究课题。这仍然可以为个别科学家定义自己独特的项目留下充足的空间。 研究问题大多是基础/好奇心驱动的,但处理大型数据集、空间技术、光学/探测器开发和信号处理都有增值渠道。天文学/天体物理学在公众和儿童中非常受欢迎,因此社会影响通常被视为我们的其他增值形式之一。 数据档案的开发对许多项目起着越来越重要的作用。一些设施完全用于公共调查,其数据可供社区免费访问,而其他设施则在专有期(通常为 6-12 个月)后发布其数据。天文台/设施通常会公开征集(每年一到两次)新的观测,各个研究小组/团队提交提案,通过同行评审进行评判和分配。这些设施的认购量通常超额几倍甚至十倍,因此竞争非常激烈。建造仪器的财团也常常通过保证时间的观测获得部分补偿。因此,在很大程度上,数据是我们领域的一种货币形式。 研究项目的时间表差别很大。在某些情况下,可以相对较快地完成(例如基于公共数据、档案研究),而对于在专有期结束时发布的观测项目,时间会稍长一些,对于最大和最复杂的项目(例如涉及新设施或新方法),可能需要几年甚至几十年的时间。 由于天文设施价格昂贵(数百万至数十亿欧元),许多设施都是国际性的,因此我们的领域实际上没有边界。 建造和运营大型国际设施的时间通常比拨款周期长得多(几十年)。寻找确保长期稳定地资助此类项目的方法,是本领域面临的一大挑战,特别是因为资助机构往往区分基础设施建设、运营成本和科学开发。 现代天体物理学中研究的大多数过程都是高度复杂和非线性的,因此建模越来越依赖于半解析和数值方法。大型 HPC 设施的使用越来越多,这是我们领域的一个转变,使我们更接近信息学、物理学和理论分子化学等领域的努力。 我们的领域有许多跨学科联系:除了 HPC 和信息学之外,物理学和数学中也有常见例子(例如,通过荷兰天体粒子物理委员会 CAN 的广义相对论/黑洞/引力波和天体粒子物理等主题),以及化学、生物学和地球科学(例如,行星科学,通过荷兰天体化学网络、DAN 和行星和系外行星计划、PEPSCi 等计划)。
主要关键词